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Determination of the Primality of N 
by Using Factors of N2 ? 1 

By H. C. Williams and J. S. Judd 

Abstract. Algorithms are developed which can be used to determine the primality of 

a large integer N when a sufficient number of prime factors of N2 + 1 are known. A 

test for the primality of N which makes use of known factors of N - 1, N + 1 and 

N2 + 1 and the factor bounds on these numbers is also presented. In order to devel- 

op the necessary theory, the properties of some functions which are a generalization 

of Lehmer functions are used. Several examples of numbers proved prime by employ- 

ing these tests are given. 

1. Introduction. Some of the most effective methods for determining the primal- 
ity of a large integer N depend upon the knowledge of factors of N - 1 or N + 1. For 
an excellent discussion of many of these techniques see Brillhart, Lehmer and Selfridge 
[1] and Selfridge and Wunderlich [6]. It may, however, occur that we are more easily 

able to determine more factors of N2 + 1, than of N2 - 1. For example, if N = 

(2198 + 1)41 - 299, then 

N-i = 23 -53 * 2837 - R1, 

N?1 = 2 *3 -R2, 

N2 + 1 = 2 52 - 13 - 37 - 109 - 397 - 2113 - 42373 - 235621 312709 - R45 

where R1, R2, R4 are each composite and any prime factor of R1R2R4 exceeds 106. 

This number is a special case of 

N=x2b -x +b (x=299,b=41). 

For these numbers, 

N2 + 1 = (X2 + 1)(b2x2 - 2bx + b2 + 1); 

hence, if x2 + 1 can be easily factored, we can find factors of N2 + 1. We also re- 

mark here that if fn is the Fibonacci number (an - 31n)/(a - ,3) and In is the Lucas 

number a' + gn , where a + ,3 = -af3 = 1, then 

f2?n+l + I =f2n-lf2n+35 2n + 1 = 5f2n- f2n+l; 

thus, many of the Fibonacci and Lucas numbers are examples of numbers N such that 
N2 + 1 may be fairly easily factored. 

The purpose of this paper is to develop algorithms which can be used to determine 
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the primality of N when a sufficient number of prime factors of N2 + 1 are known. 
We will also develop a combined test for primality which is an extension of that given 
in Section 7 of [1] . This test makes use of the knowledge of factors of N - 1, N + 1, 
N2 + 1 and the factor bounds of these numbers in order to determine the primality of 
N. In order to do this, we review some properties of functions introduced by Williams 
[7] and then show how these functions may be utilized in the development of the de- 
sired primality criteria. Finally, we give some examples of numbers which were proved 
prime by using these algorithms. 

2. The Functions Vm and Umr. Let Pi, P2 be the two zeros of x2 -Pl x + P2; 

and let ac, f30 (i = 1, 2) be the zeros of 

x2-pix+ Q =1,2)5 

where Pi, P2, Q are integers such that (Pi , P2, Q) = 1. Put 6 = P2 - p1 and define 
A = 62 = p2 - 4P2, E (P2 + 4Q)2 4P2 

Vn = 
i5 n + gn U | n = | 

an gn+ 

1 2'~a2 2 2 2l' 

The first few values for these functions are given in the table below. 

n Vn Un 

0 2 0 

1 0 1 

2 -P2 - 2Q P1 

3 P P2 - P2 -3Q 
4 p2 _ P2P2 + 4P2Q + 2Q2 P3 - 2P1P2 - 4P1Q 

TABLE 1 

Since 

Vn+4 =P1 Vn+3 -(P2 +2Q)Vn+2 +QPiVn+ _-Q2Vn, 

Un +4 = P1Un +3 _(P2 + 2Q)Un +2 + QPl Un + 1-Q2 Un X 

we see that Vn, Un are integers for any integer n > 0. It should also be noted that 

n+m Vn m P2 UnUm Vn-m' Un+m = UnVm + VnUm +PlUnUm - Um 

for any integers n, m. 
If N is any integer and (N, QP2) = 1, find M, S such that 

QM -P2S-1 (mod1) 
and put 

iS Mk/2 Vk (k even) 

k 
S V(k+ l / 2 V_ (k odd) 
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iS2 Mk/2 Uk (k even) 
JWk =(mod N). 

SM(k + 1)/2 Uk (k odd) 

From the formulas given above, we see that 

W2m Jr X2(mn+ 1) + X2m I 

X2 m + I -P2 (W2 m + ? + W2 m)-Pi W2 m + 1 (mod N), 

and 

Q(X2 -P W ) -2S2 (m odd) 
X2rnm (modN) 

2p(X - P2 Wm )22 (m even) 

W Q(2Xm Wm + P1 W ) (m odd 
W2 m 

I 
(mnod A 

P2(2X W + P W2) (m even) 

Using these formulas, we can evaluate Wk (mod N) for any k > 0 in O(log k) opera- 
tions (Lehmer [31 ). Since (Uk, N) = (Wk, N), we see that this technique for evaluating 
Wk (mod N) may be used in the evaluation of (Uk, N). 

3. Properties of Um. Several divisibility properties of the functions Un may be 
deduced from the more general results of [7]. We list here some of the properties that 
will be needed in later sections of the paper. 

We first note that if n and m are positive integers, then Un I U"n.n 
We now require a few definitions. Let the function Un be given by parameters 

PI, P2, Q. For each prime p such that (p, 2AEQ) = 1, we associate with Un the 
functions 

6 (p) = (A I p), 6(p) = (E l p), (p) = (e(p) l p), 

where the symbol (xlp) is the Legendre symbol, 

e(p) = P2 +A - 16Q + ?Pd and d2 -A (mod p). 

We see that the function q(p) is defined only when 6(p) = + 1. We also define the 
function T(p) by putting 

;@2 - e)/2 when 6 =-1, 

P) _ p 02 - 1)/2 when 6=+ 1, e- 1, 
p - 77 when 6 = e =1, 

where 6 = 6(p), e = e;p), 7 = 71(p). 
Let m be any integer such that (m, Q) I and let Ur0 be the first term of the 

sequence 

(*) 1U U2, U3, 
. 

* *, U, . 

in which m occurs as a factor. We define the increasing sequence of integers r0, T1, 

7*, . . ., T . . . by saying Urj is the first term of the sequence (*) such that ml Up 
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and i ftrj (i =O,1, 2, .. .,j- 1). We call these r's the orders of apparition of m and 
denote them by r1(m). We are now able to give the following important theorem. 

THEOREM. If p is a prime and (p, 2AEQ) = 1, there exists at least one order of 
apparition of p. Further, if rj(p) is any order of apparition of p, then r1(p) I 2T(p). 

Proof This follows as a result of Theorems 6.6, 7.1, and 7.2 of [7]. 
With this result we easily deduce 
THEOREM 1. Let (N, 2AQE) = 1 and NI U.. If q is any odd prime divisor of m 

and NtUm /qq then any prime divisor p of N which does not divide U. q must satisfy 
the congruence 

'(p) 0 (mod qa), 

where qa 11 m. 

Proof Let r be an order of apparition of p such that rIm. Clearly, since pI Um, 
such a r must exist. Now p tUm q; hence, rtm/q and, consequently, qa lr. Since q is 
odd and rI 2'(p), the theorem follows. 

4. Some Criteria for Primality. In this section we develop some results which 
will -allow us to test an integer N for primality when we know a sufficient number of 
divisors of N2 + 1. We let the completely factored part of N2 + 1 be denoted by F4 
and the unfactored part by R4;* then N2 + 1 = F4R4 and (F4, R4) = 1. 

We select integers D, C such that (D IN) = (C2 - 16D IN) = -1, where the sym- 
bol (XIN) is the Jacobi symbol. If H and K are integers and 

P1 = 4(2H2 + HKC + 2K2D), 

4P2 = P2 - 16D, 2 1 

16Q = p2 - 16(H2 C + K2CD + 8HKD) + 16D, 

we have 

A = 16D, 

+ A - 16Q + 2P1JA = 16(H + Kb)2(C + 4VD), 

E=(P +A - 16Q + 2P ')(PA2 + A - 16Q - 2P1 A)/16 

= 16(H2 - K2D)2 (C2 - 16D). 

If p is any prime such that (p, 2(H2 - K2D)(C2 - 16D)D) = 1 and (DIp) = + 1, then 

e(p) = 16(H + Kd)2(C + 4d), where d2 D (mod p). Hence, for U,, given by Pi, 
P2, Q above, we see for any prime p such that (p, 2(H2 - K2D)(C2 - 16D)D) = 1, 

5(p) = (Dip), e(p) = (C2 - 16DIp), q(p) = (C + 4dIp). 

These are all independent of the values of H, K; and consequently, we see that the 
value of T(p) is independent of H and K. 

For our fixed values of D and C we now define the functions U[_ ) (i = 1, 2,. ..) 

*We use the notation F4x and Ri4 because N2 + 1 is the fourth cyclotomic polynomial in N. 
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by using the parameters p(i), pi), Q(i) (i - 1, 2, ... ), where 

p(i) = 4(2H7 + H1KjC + 2K7D), 

pj') = 4(2Hz + H.KiC + 2K2D)2 -4D, 2 iii 

Q(i) - (2HIJ2 + H-KiC + 2KD)2 -(H2C + 8HiK1D + K72CD) + D, 

and Hi, Ki (i = 1, 2, ... ) are any two integers such that (N, H72 - K72D) - 1 
As it will be necessary to refer to the following statements several times, we put 

F4 = F4/2 and put 

(ae) For each prime q IF4 there exists some Hi, Ki such that for the function U(i) 
n 

N I U(' N)d= 1. 
N2 +1 and (N2 + 1)/q 

(,B) For some Hi, Ki we have 

NI U( )2 and (U( 1) N)=1. 
N2+1 (N2 +1)/R4' 

It should be noted here that, if N is not a divisor of U')+ then N is composite. 
N2+ 1' 

We now describe, by means of the two following theorems, some properties of 
possible prime divisors of N when either (a) or (,B) is true. We first give a theorem 
which is analogous to a recent theorem of Morrison [4] . 

THEOREM 2. If (a) is true and p is any prime divisor of N, then 

''(p)-O (mod F4). 

Proof Since I(p) has a value which depends only on the fixed values of D and 

C, it follows that, if q is any prime divisor of F4 and (o) is true, then qv I 1(p), where 
qv 11 F4; hence, F4 I f(p). 

THEOREM 3. If (f) is true and all possible prime divisors of R4 are greater than 
B4, then each prime factor p of N must satisfy a congruence of the form 

P(p) O (mod q), 

where q is some prime divisor of R4 depending on p. 
Proof Let r = r(p) be an order of apparition of p such that rl(N2 + 1); then 

vfF4 and, consequently, (R4, r) > 1. Thus, there must exist a prime q such that 

q IR4 and q I r. Since r I 'P(p), the theorem follows. 
We are now in a position to give the main result of this section. 

THEOREM 4. If (a) and (3) are both true, all prime factors of R4 are greater 
than B4 and B4F4 > N2'3 + 1, then N is a prime. 

Proof If pi is some prime divisor of N, then 

'(pi)-O (mod q1F4), 

where qj is a prime divisor of R4. 
Suppose N = P1P2P3a and a is any integer such that a > 1. Since I(Pi) pix? ? 1, 

p? ? 1 is even, and F4 is odd, we have 

p1 qi - p1> - P B4F4 -1, 
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and 

N > (B4F4 - 1)3/2. 

Thus, if N is composite, it must be the product of two distinct primes p1 and P2. 
(Since (D IN) = - 1, N cannot be a perfect square.) Since (D I P 1 P2) = (C2 - 4D IP1P2) 
= -1, we have 

1) = -6(P2)5 e(P1) = -(P2). 

Assume p1 to be that prime such that C(p1) = + 1; then 6(p2) = -1, 

p2 (P2) (mod q2F4) and p 2 - (mod qlF4). 

If F4 = 2, we have 

pl21 (mod qj) and p2 +1 (mod q2); 

hence, 

p1 >2q, -1 >2B4-1, p2> 2B-, 

and N>(B4F4 - 1)3/2. 

If F4 > 2, we have 

N2 = p2p2 =_-1 (mod F4) and p 21 (mod F4); 

consequently, 

p2 )-l (mod F4) 

and e(P2) = -1. It follows that e(p 1) = + 1 and 

P1i 1 (mod qlF4). 

Putting this result together with 

p2 -1 (mod q2F4), 

we see that N > (B4F4 - 1)3/2; thus, N cannot be the product of two or more primes 
and, therefore, must be a prime. 

5. A Further Refinement. If (a) and (,) are true and F4 > B4 > 5, we can 
lower the bound given in Theorem 4 on F4 and still test N for primality. In order to 
do this it is necessary to show that neither of two cubic equations has three integer 
roots. This improved result, given as Theorem 5, is similar to the results obtained in 
[1] by using the properties of the hyperbola x2 - y2 = N. In order to prove Theorem 
5, it should first be noted that if f = e1 + rF4 and g = 62 + sF4, where 1 1 1 = 162 I = 

l and r, s > B4, then fg = C162 + tF4, where t > B4. Thus, if (oz) and (f) are true 
and N is composite, we see by results obtained in the proof of Theorem 4 that there 
exist three integers k, 1, m such that 

N2 = (6e + kF4)(62 + 1F4)(e3 + mF4), 
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where Ie1 = 12 1= 1e3l= ele23 =-1, and k, 1, m >B4. We also assume here 
that (N, 3) = 1. 

THEOREM 5. Put 

R4 = 1 + Ml (3F4) + v,1(3F4)2 (IX1 1, 1p I < 3F4). 

Let 
F -y (mod 3) (171 1) 

(R4 + XF42)/3-X2 (mod F4) (IX2 I < F4), 

1+2 X2-y 0 (mod 3) (101 < 1), 

OR4 + yFF42)/3 - X- OF4 + (yO + y)F42)/3F4 = "2 + V2F4 X 

where 1u21 < F4. 
If either of the cubic equations 

(1) ~~~X3 - X 2 - 3plx - 9v,1 = ? (V} 0) ?) 

(2) x3 - 3X2x2 _3(32 + O)x - 3(3-2 -OY(0 + 1)) + z = 0, 

has three integer roots, then N is composite. If neither of these equations has three 
integer roots, N2 < C, where 

C = (B4F4 - 1)(- 1 + (B4 - 3 1 X2 1 )F4 + (3F4 - 1 )F42), 

and (av), (f) are both true, then N is a prime. 
Proof If (2) has three integer roots xl, x2, X3, we have 

x1 + X2 + X3 = 3X2, 

X1X2 +x2X3 +x3x1 =-3(3 A2 +0), 

xlx2x3 = 3(3v2 -70 0) -) =yO 

Also, 

(R4 +yF4)/3 = X2 + (3/12 + 0)F4 + (3V22 -yO y)F4; 

hence, 

R4 = 3X,2 + 3(392 + O)F4 + (3(3V22 -yO -y) -y)F4 

and 

N2 = -1 + 3X2F4 + 3(32 + y)F4 + (3(37'2 -O -y)-y)F3 

= (X1F4 - 1)(X2F4 - 1)(x3F4 - 1). 

Thus, if (2) has three integer roots, N2 has at least three factors greater than 1; conse- 
quently, N is composite. It can also be shown, by similar reasoning, that N is compos- 
ite if (1) has three integer roots. 
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Suppose now that neither (1) nor (2) has three integer roots, that (cv), (3) are 
both true, that N2 < C, and that N is composite. Then 

N2 = (e1 + kF4)(e2 + 1F4)(e3 + mF4), 

where Ie1I =1, e1e2e3 = -1, k, 1, m > B. Putting r = ee2m + e2e3k + ee31,s = 
e1ml + e2mk + e31k, t = kim, we have R4 = r + sF4 + tF . 

Since F4 IN2 + 1, we may assume without any loss of generality that El + kF4 
is the square of a prime and that el = - 1. Hence, 

e2mF4 + e31F4 + mlF4-O (mod 3). 

From this result we easily deduce that 

e2mF4 e31F4 K (mod 3), 

where K = 0, 1. 
Case 1. K = 0. In this case, we have 

s O (mod3), t O (mod9); 

thus, 

R4 = r + (s/3)(3F4) + (t/9)(3F4)2 

and 

Xi-r (mod3F4). 

If r = X1, we have Irl > 3F4; consequently, one of k, 1, m must exceed F4 and 

N2 >(-1 +B4F4)2(-1 + F4F4) >C. 

Thus, r = Xi and sf3 Ml (mod 3F4). If sf3 '=M , we must have one of ki, im, or 
km greater than 3F4. Hence 

N2 >(-1 +B4F4)(-1 +F4(B4 - 1IX I) + 3F4F4) > C. 

It follows that r = Xl, sf3 = Pi., t/9 = 7v1, and we see that (1) must have three integer 
roots. 

Case 2. K = 1. In this case we have 31r, 3Is and 

t= klm --y (mod 3). 

Also, 

s-3 +2-yr (mod9), t--2-y+r (mod9). 

Since 

(R4 + yF42 )/3--r/3 (mod F4), 

we have 

r/3-X-2 (mod F4). 
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If r/3 :A2, then Irl > 3F4, which is not possible; hence, 

r/3 X 

s/31 + 2-yX2 0 (mod 3), 

(t +y)/3 -y-yO (mod 3). 

Now 

((R4 + 4yF)/3 - - OF4 + (y + y0)F4)/3F4 

= (sf3 - 0)/3 + F4((t + y)/3 + y + y0)/3; 

thus, 

(sf3 - 0)/3 -= 2 (mod F4). 

If ,2 += (sf3 - 0)/3, we have 

Is/3-01>3F4 or Is/31 >3F4 - 1. 

One of ki, im, km must be greater than 3F4 - 1 and 

N2 > (B4F4 - 1)(-1 + (B4 - 3 1 X2 I )F4 + (3F4 - 1)F42) = C. 

Hence, 

r/3 = X22, (s/3 - 0)/3 = "2' ((t + 'y)/3 + y + y0)/3 = 5 

and (2) has the three integer roots e1 e2m, e2 e3k, e1 e31. Since this is impossible, N 
cannot be composite. 

6. A Combined Theorem. Let F1 be the completely factored part of N - 1, 
F2 be the completely factored part of N + 1, R1 = (N - 1)/F1, R2 = (N + 1)/F2. 
For convenience of reference, we give the following tests of [1]. 

(I) For each prime pi dividing F1 there exists an ai such that 

aiYl--i (mod N) and (aN1)IPi- 

(II) For some a, 

aN-l1 (modN) and (a(l)R - 1N) = 1. 

(III) For each prime qi dividing F2 there exists a Lucas sequence { u()} with 
discriminant D' for which (D' IN) = -1, 

NlUK + 1 and (U(N+ 1)qiN)=1. 

(IV) For some Lucas sequence { uk} for which (D' IN) = - 1, 

NluN+1 and (U(N+1)/R2 , N)=l. 

In [1l the following theorem is proved. 
THEOREM. Assume (I), (II), (III), (IV), and suppose all prime factors of R1 and 

P are respectively > B1 and B2. Define r and s by R1 = F2s + r (0 ? r < F2), and 
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let 

G = max(B1F, + 1, B2F2 - 1, mF1F2 + rF1 + 1) (m > 1). 

Further, in the case that G = mF1F2 + rF1 + 1, assume (XiF1F2 + rF1 + 1){N, 
6' < X < m, where 6' is the Kronecker delta. 

If N < G(B1B2FjF2 + 1), then N is prime. 
In this section we will obtain an extension of this theorem which takes into ac- 

count the factors of.N2 + 1 and, to a lesser extent, the factor bound of R4. In order 
to do this we first give some notation. 

Put 
F1 = F1/2, F2 = F2/25 

R2 = r + SF1, where O r < F1, 

S k, 2R1R2-h, hN g (modF4), 

where O k, h, g<F4. 
Let f be any unitary divisor of F4, i.e. (F4/f, f) = 1. Define 

L(f)=-1 +rF2 +bFF2, 

where 

b-k - fgy (mod F4) (O < b < F4), 

and (x, y) is a solution of the linear Diophantine equation x(F4/f) - yf = 1. Put 
A = minflF4 L(f), where the minimum is taken over all unitary divisors of F4 includ- 
ing 1 and F4. 

LEMMA. If 

Z_1 (modF1), Z-(modmodF2), Z2_-1 (modF4), 

then 

z L(f) (mod FF2F4) 

for some unitary divisor f of F4. 
Proof Since 

z2 =--1N2 (mod F4), 

we have 

z-N (mod f), z--N (mod F4/f), 

for some factor f of F4. Since (x - N, x + N)I 2N and (2N, F4) = 1, f must be a uni- 
tary factor of F4. Thus, 

z-N (mod fFlF2), z--N (mod F4/f). 

It follows that 

z--N(1 - (N2 -1)yf) (mod F1F2F4), 
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where x(F4/f) - yf = 1. The result follows on noting that 

N3 - NgF1F2 (mod F1F2F4) 

and 

N -1 + rF2 + kF1F2 (mod F1F2F4). 

We are now able to give our combined theorem as 
THEOREM 6. Assume that F4 > 1, (I), (II), (III), (IV), (a) and (,) are all true 

with the value of D' used in (III) and (IV) being a square multiple of the value of D 
used in (a) and (,). If L(f ) is not a divisor of N for each unitary divisor f of F4 and 
1 + hF1F2 tN, then N is prime if N < T, where T = min(MlM2, M3, MM3) and 

M = 1 + B1B2B4F1F2F4, 

M1 = max(- 1 + B4F4, 1 + B1B2FjF2, 1 + hF1F2 + F1F2F4), 

M2 = max(+B1F,-1+B2F2, L(1) + mF1F2F4), 

M3 = max(l + B1F1, -1 + B2F2, A + F1F2F4), 

and L(1) + tF1F2F4 is not a divisor of N for 1 < t < m. 
Proof We will say that a prime divisor p of N is of the first kind if e(p) = 

6(p) = - 1; otherwise, we call p a prime of the second kind. If p is a prime of the first 
kind, we must have, by results proved in [1] together with Theorem 2, 

p-1 (mod F1), p- 1 (mod F2), p2 -1 (mod F4). 

Hence, 

p >max(A +F1F2F4, 1 +B1F ,F-1 +B2F2) =M3. 

If p is a prime of the second kind we have 

p 1 (mod q1F1), p? 1 (mod q2F2), p2-=1 (mod q4F4), 

where q IR1 (i = 1, 2, 4); thus, 

p2- 1 mod(qlq2q4F1F2F4) 

and p > VM,. Since N = -1 (mod F4) and F4 > 2, we must have at least one prime 
divisor of N which is of the first kind. 

If N is the product of three primes, one of them must be of the first kind and 
since (DIN) = (C2 - 16D IN) = - 1, the other two must be of the same kind. Hence, 
N > min(M 3, MM3), which is impossible. 

If N is the product of four or more primes, one is of the first kind, and at least 
two others must be of the same kind; and we have already seen that this is not possible. 

If N = P1P2 where p1, P2 are distinct primes, we know by the reasoning of 
Theorem 4, that 

p1 1 (mod qaF), p1F 1 (mod q2F2), p1 ?1 (mod q4F4), 
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where qIRi (i = 1, 2, 4). It follows that 

p1 1 (mod qlFl), P2 -l (mod q2F2), P2 ?N (mod q4F4). 

If p1 1 (mod q4F4), we have 

p1 1 (mod qlq2q4F1F2F4), P2 L(F4) (mod F1F2F4) 

and N = pipMM3 If p1 - 1 (mod q4F4), we have 

Pi 1 + hFlF2 (mod F1F2F4) 

and 

p1 1 (mod qlq2FlF2); 

consequently, 

P1 max(- 1 + B4F4, 1 + BlB2FlF2, 1 + hFlF2 + F1F2F4) =M1. 

Also, 

P2 ?max(l +BlFl,-1 +B2F2, L(1) + mFlF2F4) = M2; 

and we have N > M1M2. Since N cannot be the product of two or more primes, it 

must be a prime. 
COROLLARY. If the conditions of Theorem 6 are all true except that M1M2 < 

N < min(MM3, M33), then N must be the product of two primes and both of these 

primes must exceed Min(Ml, M2). If, on the other hand, we have N > min(MM3, M3), 
then the smallest prime divisor of N must exceed min(M3, R), where 

R=max(V/T1 +BlFl, -1+ B2F2). 

Remark 1. We note here that it is an easy matter to factor N2 + 1 by trial divi- 

sion at the same time as N + 1 and N - 1. If d is a trial divisor of N - 1 and leaves 
a remainder of r, then d IN2 + 1 if and only if d l r(r + 2) + 2. 

Remark 2. It should be emphasized that it is not always necessary, in determin- 

ing the primality of a particular N, to verify all the assertions (I), (II), (III), (IV), (a) 
and (). For example, if T = M1M2, M1 = 1 + hFlF2 + F1F2F4 and M2= L()+ 

mFlF2F4, it would not be necessary to verify each of (II), (IV) and (,). For, if B1 > 
m, which is usually the case, then M > M2 and it would be sufficient to verify (I), (II), 

(III), and (a) only. 
Remark 3. In practice T is usually M1M2 with M1 = 1 + BlB2FlF2 and M2 = 

L(1) + mFlF2F4. Also, very frequently a simple method of factoring like Pollard's 
method [5] is successful in finding a fairly large factor of N2 + 1. 

Remark 4. In finding a value for m in the theorem, it is not necessary to attempt 
to divide L(1) + tFlF2F4 into N for each value of t such that 1 < t < m. Since 
this number must represent a prime factor of N, it suffices to divide N by it only when 
it has no prime factor. For many values of t, L(1) + tFlF2F4 has a small prime fac- 

tor; when this occurs no trial division by L(1) + tFlF2F4 is required. 
Remark 5. Frequently, at least one of the cofactors R1, R2, R4 is a pseudoprime. 
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Suppose Ri is a pseudoprime. Then, if we do not have enough factors of N2 + 1 to 
demonstrate the primality of N, we can attempt to demonstrate the primality of Ri. 
If we succeed in this, it becomes a fairly easy matter to verify the primality of N. If, 
on using our theorem, we fail to prove R, a prime, the corollary allows us to find a 
bound on the largest prime divisor of Ri. This usually increases the size of Bi and 
very often with this increased value for Bi we are able to demonstrate the primality 
of N. (The authors are indebted to John Selfridge for this suggestion.) 

7. Some Examples. These tests were implemented on a computer and used to 
determine the primality of some numbers of special forms. In the following three 
lists we present some of the primes which were discovered using the tests of Theorems 
4 and 5. 

For 
L = (102n + I)a + 0n, M= (22n + l)b-2 , 

and 

N= (22n + 1)c + 2 

some values of (a, n), (b, n) and (c, n) for which L, M, or N are prime are given in 
Tables 2, 3 and 4, respectively. 

A computer program was written to implement the algorithm of Theorem 6 on an 

IBM/370-158 computer. We present below some selected results of running this pro- 
gram. 

For 

N = 3598020110125739154986036092356326252597494924799183218 

7257385201689, 

the sixty-eight digit pseudoprime factor of f353 (see Jarden [2]), we have for B1 = B2 

= B4 = 4 x 106, 

F1 = 23 3-3 13 - 353 - 6163 - 349291, 

F2 = 2 5 - 7 - 1543, 

F4 = 2 123757 - 331081. 

For m > 4122, we have N < T, where T = M1M2, M1 = BlB2FlF2 + 1, and 

M2= L(1) + mFlF2F4. N was easily found by the program to be prime. 
For 

N = 22966686648632120276391228028485200841318497622533370591664502461, 

the sixty-five digit pseudoprime factor of f33 1, we have for B1 = B2 = B4 = 3 x 106, 

F1 = 22 32 . 5 - 11 * 331, 

F2 = 2 - 7 2137, 

F4 = 2 - 41 . 125813. 
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n a 

19 3 
20 11 
20 161 
21 77 
25 21 

TABLE 2 

n b 

87 9 
87 57 
90 73 
99 41 

TABLE 3 

n C 

83 7 
83 13 
91 31 
91 75 
93 85 
97 15 
97 55 
97 111 

103 13 
103 87 
105 13 
105 109 
107 105 

TABLE 4 

This is not enough information to prove this number prime; however, R1 was 
found to be a pseudoprime. 

Now if we put 

N' = R= 35043313266550886930317110727341696178275958409675868338467, 
(59 digits) 

we find with B' = B2 = B4 = 3 x 106, 

F= 2 3 * 7 * 87631 - 100183, 

F2= 2 2 - 71 * 1093, 
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F4= 2 - 5. 

Here N'> min(MI3, M'MI); thus, the program determined that any prime divisor of 
N' must exceed 

B'F' + 1 = 1106171195598000001; 

and, consequently, B1 for R1 can be increased to the value 1106171195598000001. 
This, however, is still not enough to prove N prime. It was then discovered that RI is 
also a pseudoprime. 

We put 

AT = R1 = 95039484139540488825968859064437770696328870101 (48 digits). 

We find with B" = B" = B" = 3 x 106, 

F"t= 22 . 52 - 67, 

F2' = 2 32 * 535 

F4' = 2 41 997 - 1519313. 

Then 

M,'M < N" < min((M3')3, M"MD). 

The program verified that any prime divisor of N" must exceed Mi', which has the 
value 

L"(1) + F'F 'F4 = 309165997822073801; 

thus, we can now increase the size of B' to 3 x 1017. Using this value for B', the 
program found N' and then N to both be primes. 

We also used Pollard's method to attempt to factor R" and this produced the 
additional prime factor 565909422161; this together with the previous factors was 
enough for the program to determine N" a prime. 

At the suggestion of J. Selfridge, the number 

N = 32656499591185747972776747396512425885838364422981 (50 digits) 

41 
= E(-1)k k! 

k= 1 

was run on the computer. For B1 = B2 = B4 = 2 x 106, we have 

F1 = 22 * 5 - 13 - 37, 

F2 = 2 - 3 * 41, 

F4 = 2. 

This is not enough to prove N a prime; however, R2 is a pseudoprime. Putting 

N' = R2 = 132749998338153447043807916245985471080643757817 (48 digits) 
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andB = B= B =2 x 106, we get 

F= 23 3 - 167 - 3593, 

F2 = 2 1307, 

F' = 2 5 - 61 - 614177. 

Hence 

MIMI < N' < min(M 3, M'MI) 

and 

M; = L (1) + F1F2F4 = min(Mi, M2) 

= 4964870743200170113. 

Thus, any prime divisor of N' must exceed MI and B2 can now be increased to 4.9 x 
1018. With this new value of B2, the program was able to prove N prime. 
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